RL-TR-96-79
Final Technical Report
May 1996

A COOPERATIVE PROGRAM

UNDERSTANDING
ENVIRONMENT

University of Hawaii at Manoa

Alex Quilici and David N. Chin

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19960730 075

Rome Laboratory
Air Force Materiel Command
Rome, New York

Vi teR ey TURETT 4 o
DG GUATITY Disvuoiny |




This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and is
releasable to the National Technical Information Service (NTIS). At NTIS, it will be releasable
to the general public, including foreign nations.

RL-TR-96-79 has been reviewed and is approved for publication.

APPROVED:

DOUGLAS A. WHITE
Project Engineer

FOR THE COMMANDER: W %M

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory mailing list,
or if the addressee is no longer employed by your organization, please notify Rome Laboratory/
( c3cA), Rome NY 13441. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.



roved

REPORT DOCUMENTATION PAGE | cwianb orosotes

Publc reporting burcien for this colsction of information is estimsted to average 1 hoLr per respones,

nchuding the time for reviewing instructions,
gathering and mairtaining the ciets nesded, and compisting snd reviewing the colsction of information. Send carmments regarding this burden sstimate or ary cther aspect o this
collection of inforration, including suggestions for reducing this burden, to Washington Heedauarters Services, Directorats for information Operations and Reparts, 1215 Jefferson
Davis Highway, Sults 1204, Aringtan, VA 222024302, and to the Office of Managernert and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
May 1996 Final Sep 93 - Apr 95
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
C - F30602-93-C-0257
A COOPERATIVE PROGRAM UNDERSTANDING ENVIRONMENT PE - 62702F
PR - 5581
6. AUTHOR(S) TA - 27
Alex Quilici and David N. Chin WU - 76
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Hawaii at Manoa REPORT NUMBER
2540 Dole Street, Holmes 483
Honolulu HI 96822 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Rome Laboratory/C3CA
525 Brooks Rd
Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL~-TR-96-79

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer:

Douglas A. White/C3CA/(315) 330-2129

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Madrum 200 words)

extract designs from legacy software.
an automated program understanding component;
the automatically extracted design information;

This report describes research and development undertaken to demonstrate a prototype
program understanding environmment in which programmers and system cooperate to

The prototype includes several key components:
a design notebook for users to extend
and a query answering component.

The report describes accomplishments and contributions to the area of;program
understanding, outlines future work necessary to extend the prototype to be useful
in the real applications, and presents some conclusions and lessons learmed.

14, SUBJECT TERMS

Software, Understanding, Reverse engineering, Knowledge-based

18 NXSBEB OF PAGES

16, PRICE CODE

systems . 4

. SECURITY CLASSIFICATION 18 SECUR[TY CLASSIFICATION [19. SECURITY CLASSIFICATION {20. LIMITATION OF AB$-ACT
& OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

T
NSN 7540-01-280-5500

Standara f o @ e
Prescrbeo oy AN L
298102 :

-3
LN



Contents
1 Introduction

2 Results and Contributions
2.1 Automated Program Understanding . ... ........ ... .......
2.2 Assisted Program Understanding . . . .. ... ... ... ... ... ..

3 Limitations and Future Work _
3.1 Improving the Automated Program Understander. . . . . ... .. .. ...
3.2 Addressing Useability Problems with DECODE . . . ... ... .......
3.3 Addressing Suitability for Maintenance . . . . . . .. ... ... ...
3.4 Extending DECODE’s Notion of Cooperative . . . . ... ..........

4 Conclusions

‘A Plan Definitions

A.1 Basic Plan Definitions . . . ... .. ... ... . o oo
A.2 Specialized Plan Definitions . . . .. ... ... ... . ... ... ... ..
A.3 Implied Plan Definitions . . . . . .. ... ... . . . . oo oL
A.4 Some Example Plan Definitions . . . . .. ... ... ... ... ... ..
A5 Constraint Definitions . . . ... .. .. ... . o oo oL,

B Design Editor/Query Browser
C Additional Implementation Details

D Publications Resulting from this Effort

1/2

14

16
16
18
19
21
24

28

30

32




1 Introduction

Our original research proposal [Quilici and Chin, 1993] had the following key objective:

Create a demonstration prototype program of a program understanding envi-
ronment in which programmers and system cooperate to extract designs from
legacy software.

This prototype included several key components: an automated program understanding
component, a design notebook for users to extend the automatically extract design infor-
mation, and a query answering component. It also had the following key deliverables:

A prototype of the system and a knowledge base formed from the use of this
system to understand a piece of real-world DOD software.

This technical report discusses how well we achieved our key objectives and deliverables.
The remainder of the report is organized as follows. Section 2 summarizes what we have
accomplished with this project and our specific contributions to the area of program under-
standing. Section 3 outlines future work that is necessary to extend this prototype towards
being useable in the real world. Section 4 presents some conclusions and lessons learned.
The report also contains several appendices. Appendix A gives detailed examples of the
plans in the plan library and their actual representational format. Appendix B gives a de-
tailed discussion of design editor features and the possible queries users can ask. Appendix
C contains additional implementation details. Appendix D enumerates publications that
resulted from this effort.

2 Results and Contributions

We successfully created a demonstration prototype of a cooperative understanding environ-
ment called DECODE. This prototype is described in detail in [Chin and Quilici, 1995].
The key aspects of our initial stab at cooperative program understanding are:

e The automated program understander (the APU) makes a pass through the source,
extracting whatever design information it can.

e The system graphically presents the APU-extracted design information and how it
links to the source code. (This is currently done in a pair of windows, one of which
shows the design elements, the other of which shows the source code. Highlighting a
design element causes the corresponding source to be displayed.)

o The user uses the design editor to extend this design information by adding new design
elements, highlighted arbitrary pieces of the source code, and linking them together.

e The user uses the design editor and an additional query component to browse and
query the extracted design and its links to the code.

Essentially, our prototype system “cooperates” by providing:



e An initial, partial understanding of the software so that the user need not start
from scratch. This is especially important in that the system’s recognition of non-
contiguous low-level plans provides hints to the user about how non-contiguous source
code is related.

e A mechanism for query answering so that the user can not only see how the various
parts of the source code are related through the jointly-extracted design, but also
which source code is not yet understood and which parts of a design have not yet
been located in the source code.

This system makes contributions in two specific areas: algorithms for automated pro-
gram understanding, and techniques for forming conceptual, machine processable descrip-
tions of existing software.

2.1 Automated Program Understanding

A key contribution of this research is in producing a much improved algorithm for automated
program understanding. There is both a straightforward argument for why this algorithm
should have better real-world performance than many existing algorithms, as well as some
initial empirical evidence that it is a better performer.

Before starting this effort, we had produced an initial program understanding algorithm
based on our initial observations of student programmers understanding short C functions
[Quilici 1993]. In implementing this algorithm, we based our representation of plans on that
of Andersen Consulting’s top-down, library-driven Concept Recognizer [Ning et al., 1993], in
which plans were represented as a combination of components (which are matched against
AST-entries and already recognized plans) and constraints (which describe relationships
that must hold between the components). However, we had extended their representation
to support a bottom-up, code-driven approach that seemed to better match how the student
programmers we initially observed understood programs. In this effort, we further refined
the algorithm so that the resulting representation combined three key features: indexing,
specialization, and implication.

¢ Indezing involves marking each plan so that the understander considers it only when
a particular one of its components is present and one or more of its constraints hold.

o Specialization allows a plan to be defined as additional constraints on an existing
plan’s attributes and considered only when the existing plan is recognized.

o Implication allows a plan to be defined as a variant on an existing plan (additional
components and/or constraints) and considered only when the existing plan is recog-

nized.

Specific Improvements to the Program Understanding Algorithm

As part of this effort, we addressed several problems with our original algorithm as it first
appeared [Quilici, 1994; Quilici, 1993]:



e The algorithm’s handling of indezing was complez. In particular, the algorithm had to
deal with the possibility that at the time it encountered a plan’s indexing component
in the source code, some subplans that correspond to the plan’s other components
may not have been recognized. As a result, the algorithm had to maintain partially
indexed and partially recognized plans until the missing components were located and
the plan could be completely recognized. This led to a relatively complex algorithm
with significant space requirements and hard-to-predict performance.

We addressed this problem by organizing the plan library in layers, where each layer
consists of plans whose components were plans in previous layers. The algorithm then
makes one pass for each layer, looking only for the indexes for that layer. Essentially,
this guarantees that the test for whether a plan is actually there can occur at the time
a plan is indexed, greatly simplifying the algorithm.

o There were important relationships between plans we couldn’t represent. In particular,
if it was convenient to define one plan as a slight extension (additional component
and some constraints) to an existing plan, we couldn’t represent that relationship and
instead had to represent the variant as a brand-new unrelated plan. This situation
occurred because implication was originally unconditional; it was meant to represent
the situation where locating one plan automatically meant another plan was present.

We addressed the problem by making implication conditional, where the condition can
consist of additional components to look for and additional constraints to test. We also
modified implication to take plan library layers into account, so that the recognition
of an implied plan takes place when the library layer containing it is processed, and
we modified the library so that the conditions that cause a plan to be implied are
considered in forming the plan layers.

e Our definition of plans as specializations of other plans was problematic. In particular,
our original definition of plan specialization allowed us to define a plan as a limited
form of conditional implication, in which the conditions all involved trying to check
whether various additional constraints held on components or attributes. There are
several problems with this approach. One is that this form of specialization is not
general enough to represent all key relationships between different plans (such as one
plan being just like another except for an additional component). The second is that
checking for specialized plans complicated the overall recognition algorithm.

We addressed these problems by generalizing implication and limiting specialization to
additional constraints on plan attributes. It turns out that a specialized plan definition
can be automatically converted to a regular plan definition, with the plan it specializes
as its component and the constraints on that plan’s attributes as the constraints on
its component. This means the recognition algorithm as a whole need no longer
know about specialization, simplifying it significantly. Yet because we generalized
implication, we have actually extended the power of our representation.

An Argument for Potential Improved Performance Results

There is an argument for why our program understanding algorithm should perform better
than existing algorithms [Chin and Quilici, 1995]. There are three key points:



¢ A bottom-up (code-driven) approach should reduce the number of plans considered over
a top-down (library-driven) approach. In particular, a library-driven approach must
check for instances of every plan in the library. A code-driven approach checks only for
those plans with recognized components. As libraries get larger, individual programs
contain a smaller subset of the library, which results in a larger advantage for the
bottom-up approach.

o Indezing should reduce the number of plans considered over the basic bottom-up mech-
anism. In particular, in the basic bottom-up approach, the recognition of any plan
component leads to an attempt to recognize the entire plan. In the indexed approach,
only the recognition of the indexed component(s) leads to an attempt to recognize
the entire plan. Thus, indexing should reduce the number of plans considered by the
number of times non-indexed components occur.

o Indezing should reduce the number of constraint evaluations and matches over a non-
indezed approach. In particular, the indexing approach essentially provides a partial
ordering of matches and constraint evaluations. An index that severely constrains the
possible matches of the remaining components, and that includes constraints with a
high failure rate on non-instances of the plan, will reduce the matching over using a
randomly selected component as an index.

Interestingly enough, specializations and implication do not directly improve perfor-
mance; their power is in simplifying the process of providing the plans in the plan library.

Initial Performance Testing

As part of this project, we performed two different tests of our plan recognition algorithm.

One was as part of the DECODE system. We compared our indexed approach against
a standard bottom-up approach by using both to recognize various individual plans on a
COBOL program with approximately 1000 syntax tree entries. (We recognized individual
plans rather than trying to recognize an entire library because resource constraints did not
allow to provide a complete plan library suitable for understanding programs of that size.)
On average, as reported in [Chin and Quilici, 1995], we achieved the following improvements:

e A ten-fold reduction in the amount of matching.
e A five-fold reduction in the number of constraint evaluations.

o A five-fold reduction (with precomputed dependencies) or two-fold reduction (with
dynamically computed dependencies) in the time spent recognizing plans.

The other was a separate implementation that was part of a Master’s thesis [Chakravarty,
1995]. This project compared the performance of a particular top-down approach [Koza-
czynski et al. 1994; Kozaczynski and Ning, 1992], a bottom-up approach (based on the
representation in [Kozaczynski and Ning, 1994]), and the indexing approach on complete
recognition of a variety of short C programs with 25-50 syntax tree entries. (The programs
were short because we had no C parser or data-flow analyser available. As a result, the stu-
dent formed the AST and did all the data- and control-low analysis by hand.) This project



didn’t keep meaningful accounting of the amount of matching and constraint evaluation,
but instead focused on the total time to perform the necessary recognition. We discovered
the following improvements by the indexing algorithm:

e A twenty-fold improvement in the time spent recognizing plans over the top-down
approach.

e A ten-fold improvement in the time spent recognizing plans over the bottom-up ap-
proach.

2.2 Assisted Program Understanding

This research effort also provides some contributions in the area of assisted program under-
standing.

One contribution we have made in this area is to provide a mechanism that allows
programmers to visually record the design elements they recognize in the code, visually
link those elements to the source code that implements them, and then visually browse the
source and design in parallel. Our mechanism for recording design information is similar to
that of CASE tools. In fact, others have used CASE tools to support reverse engineering
by having programmers use these tools to record the design elements they locate within
the code. However, existing tools provide no mechanism to link and view the relationships
between these design elements and the source. We remedy this drawback by providing users
with an explicit mechanism for linking arbitrary blocks of source code to particular design
elements, and then allowing users to select a design element to display the source code
related to it (and vice versa).

Another contribution we have made is in the area of assisting the user in recognizing
design elements. There are two types of assistance.

e QOur automated program understander automatically recognizes some design elements.
This required modifying the plan definition language so that high-level plans are linked
to the design elements they implement. That way, when the system recognizes one
of these plans, it automatically recognizes the corresponding design element. This
provides a connection between the space of plans needed by the automated program
understander and the space of design elements recognized by the user. In addition,
when the system recognizes a design element, such as an operation, it also recognizes
related design elements that must be present, such as the object associated with that
operation and the classes to which it is statically related.

e User can specify the source code related to various design elements by selecting rec-
ognized plan instances as well as highlighting source code lines. Because these plans
are sometimes non-local (involving statements dispersed throughout the code), their
automatic recognition highlights non-obvious relationships between these statements,
and reduces the amount of work necessary for the user to specify the relationships
between design elements and source code.

Our final contribution in this area is the mechanism we provide for answering queries
about the extracted design and its relationship to the source code. We focus on two general



classes of queries: about the state of the understanding process (such as “What code is
not mapped to any design element?” and “What design elements are not mapped to any
code?”) and about the relationship of sets of design elements to the code (such as “What
code involves this class or any of its subclasses?”). These queries allow the user to see at
a glance the underlying relationships between large blocks of source code. Answering these
queries is only possible because we record and maintain the links between design elements
and the source code. Other systems, such as COBOL-SRE [Ning et al., 1993], which allows
users to label highlighted sections of code, cannot support these queries.

3 Limitations and Future Work

3.1 Improving the Automated Program Understander

There are two specific areas where we need to perform further work on our APU: additional
empirical tests of its behavior, and formalizing its algorithm in a way that allows detailed
comparison of its behavior with other algorithms.

Performing Large Scale Scale-Up Experiments

Our initial performance studies show that our revised program understanding algorithm
represents a significant improvement in performance over our implementations of existing
algorithms. Unfortunately, because of limitations with our original tools (a lack of parsing
or data-flow tools for C, as well as a limited ability to form ASTs and data and control-flow
analysis for COBOL), we have done only a few studies, which leaves a crucial open question:
Does the apparent five to ten-fold improvement in performance scale? In particular, does
it scale with the size of the plan library, with the size of the program, and with the size of
individual plans? That is, are we improving the understanding algorithm’s order or just its
constant?

To address these questions, we need to perform several tests. One is to take a variety of
COBOL programs ranging in size from the 1000 AST element programs with which we’re
now working to much larger programs in the 10,000-100,000 AST element range. This is
a matter of obtaining the appropriate AST-building and flow-analysis tools (e.g., Software
Refinery). This will give us an idea of the scalability of the algorithm in terms of program
size. Another test is to build a library containing the estimated 150-200 plans necessary
to completely understand a 1000 AST element program. This is mostly a matter of labor;
having a student sit down and construct these plans will take on the order of one or two
full time months. This will give us an idea of the scalability of the algorithm in terms of
the plan library, as well as in terms of plan size (as a realistic library will have some plans
with a large number of components).

Formalizing Our Understander’s Behavior

While empirical testing is certainly necessary and is likely to help us better understand our
program understanding algorithm’s performance with real-world programs, it doesn’t help
us understand theoretically why it performs the way it does, nor does it help us compare
its behavior to that of other program understanding algorithms. Part of the problem is



that our algorithm uses heuristic tricks to improve performance (such as indexing), which
makes it difficult to analyze its performance or predict how its performance will be affected
by variants in the plan library (such as adding large numbers of new plans) or in the
programs being understood (such as changing the distribution of basic syntax tree items
and the dependency relationships between them). It also uses a representational framework
(components and constraints) that differs from frameworks used by some other researchers
(such as flowgraphs [Wills, 1992; Wills, 1994] or transformation rules [Johnson, 1986)),
which makes it difficult to systematically compare these different algorithms.

One way to partially address the comparability problem would be to find a common
framework into which we could transform various program understanding algorithms, in-
cluding ours. Similarly, we could also try to find a common representation into which we
can transform the representations used by these algorithms. This common framework would
allow comparison of their behaviors and, if the framework is amenable to analysis, it would
also allow us to theoretically analyze and predict their performance.

We have recently begun work in this direction, having transformed our algorithm into
a constraint satisfaction framework [Quilici and Woods, 1996]. We have chosen constraint
satisfaction because it has the advantage that it has been well studied and that a variety
of approaches to solving constraint satisfaction problems have been analyzed theoretically.
This initial foray into constraint satisfaction has allowed us to understand better what
is happening with our algorithm’s approach to indexing in terms of reducing the size of
variable domains and in ordering constraints. However, we still need to transform other
existing algorithms into this framework so that we can compare their performance, and we
need to work on finding a common representational framework. One reasonable approach
is to attempt to transform components and constraints into the plan-calculus flow-graph
representation used by the Programmer’s Apprentice [Rich and Waters, 1990].

3.2 Addressing Useability Problems with DECODE

Our original plan was to test DECODE on an actual DoD COBOL program. However,
our initial testing (both with ourselves and with several graduate students) has made clear
that DECODE has serious shortcomings that must be addressed before it can be applied
to large systems.

Providing Program Plans

For purely automated plan-based program understanding techniques to really pay off on
large programs, it is necessary to have both a sizeable domain-independent library (with
code patterns for tasks such as maintaining a table) and a significant domain-dependent
library (with code-patterns for common tasks such as batch-verification of transactions).
Because there is such a large variety of possible domains, it is unrealistic to expect that these
libraries can be completely provided in advance. That means that ordinary programmers
will need to provide these patterns.

The problem is that DECODE has no provision to allow non-expert users to easily add
new code patterns to the library. Providing these plans now requires that the user have
specific knowledge of our plan language in terms of its syntax, the specific abstract syntax
tree items and plans available as plan components, and the exact semantics and behavior of



a variety of different constraints. In addition, the user must be able to specify the indexing
of plans (when they should be considered) and be able to define some plans as slight variants
of others (determining which existing plan a new plan is most like). This makes it difficult
for an average user to provide program plans.

In particular, it currently takes expert users of the system (the designers), approximately
15-20 minutes to provide a basic plan pattern (e.g., Display-Labelled-Record [Chin and
Quilici, 1995]), which consists of 4 components (three MOVEs and a WRITE, in its simplest
incarnation) and six constraints. Coming up with the plan requires determining which
chunks of code the plan is supposed to match, defining a plan (currently in a LISP-like
syntax) that matches these fragments, trying it out, seeing if it recognized more or less
code than it should, editing the plan to make it more accurate, and then repeating the
process. For more complex plans, such as those requiring constraints between other plans,
this process is more difficult because exactly what constraints should hold between higher-
level plans with potentially interleaved components is often difficult to determine.

As a result, it is clear that DECODE requires an alternate mechanism for providing
plans. Our proposed future mechanism is to let users provide these plans by example. The
idea is to have users select a program section that corresponds to an instance of a particular
design element (e.g., highlighting a set of statements that together are an instance of the
plan Display-Table). This code section can be considered an overly constrained code
pattern that will only recognize this one instance. However, the system can provide help to
the user in generalizing this code pattern. In particular, the system can:

e Visually display a list of all the specific constraints involved in the example, which
the programmer can edit to create a final code pattern.

e Provide information about the frequency of each component’s occurrence in the pro-
gram, as well as about the percentage of various constraints holding among instances
of the plan’s components, which can help the user select which components and con-
straints might be the best index.

o Automatically define a new plan in terms of existing plans, when the system has
already recognized these plans within sections of code the user has highlighted (as

opposed to the underlying syntax tree elements).

o Automatically reconstruct a plan’s definition as an implication by examining the user’s
final plan definition to see whether it contains any existing plan definitions as a subset.

e Allow the user to immediately run the plan against the code and examine its per-
formance. This could be done by letting the user select chunks of code that are
expected to match against the plan and then request a match, and by having the sys-
tem determine exactly where and why the expected match doesn’t occur (e.g., which
components are missing, which constraints failed, and so on).

Of course, there are many issues involved in making this mechanism work. How can we
best display constraints to convey their meaning? What’s the best way to let users visually
edit constraints and generalize pieces of a plan? How do we decide which plans are most
similar to a new plan? There are also more speculative approaches, such as having the user

10



select a number of examples of a particular plan and having the system attempt to find a
suitable generalization that covers those examples.

As aresult, this mechanism was not a part of our original proposal, and we have therefore
not implemented it in the current version of DECODE. It is, however, a crucial detail in
terms of constructing the necessary code pattern library without using specialized knowledge
engineers.

Recording Design Relationships

The basic mechanism in DECODE for indicating relationships between source and design is
to have the user highlight the relevant lines. From our simple tests, it is apparent that this
approach won’t scale. Users often fail to highlight crucial portions of the implementation,
especially when it is delocalized and consists of plans that are not in the APU’s plan library.

This problem can be addressed by providing mechanisms that suggest related code
chunks to users. For example, COBOL/SRE [Ning et al., 1993] allowed the users to form
segments from a variety of different slicing techniques. Users were then allowed to perform
various set operations to these segments and then save these segments by name. In some
sense, DECODE can be thought of as having a much more primitive mechanism for forming
segments (the user simply locates and then highlights the statements in the segment of
interest) but a much more advanced mechanism for organizing segments (by allowing users
to connect segments to various elements in the design space). We could greatly improve
DECODE’s scalability by integrating it with COBOL/SRE’s segment forming mechanism.

Another complimentary way to address this problem is to integrate the segment forming
mechanism with work done on automatically recognizing objects and operations [Newcomb,
1995]. This work is based on slicing and forms a variety of slices that closely correspond to
particular classes of methods on objects. For example, a slice through a COBOL procedure
that updates one record but uses another can be considered to be a transforming method on
the object represented by the updated record. This work suggests mechanisms for locating
candidate code for objects and their operations, but does not provide any mechanism for
linking these recognized objects to a domain model (that is, it really does not know exactly
what type of object or operation it recognized). However, by trying to recognize program
plans on candidate “methods”, we can greatly limit the search space for the program un-
derstanding tool, potentially improving its performance. And by then allowing the user to
link these “methods” to actual operations in the design hierarchy, we can greatly simplify
the user’s task in locating the complete implementation of design elements.

3.3 Addressing Suitability for Maintenance
In addition to useability problems with larger programs, DECODE also has several flaws

that currently make it unsuitable as an understanding tool to support real-world program
maintenance.

Dealing With Program Modifications

DECODE currently assumes the program being understood will not change—an assumption
that clearly does not hold with real-world programs. As a result, DECODE currently has
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no mechanism for recognizing which parts of the program (and their corresponding design
elements) are affected by a given user change, which makes it unusable as a real-world
maintenance tool (although it does not detract from its usefulness as a tool for exploring
cooperative program understanding). ]

Fortunately, this problem is relatively easy to address. We need to modify DECODE so
that whenever a program is edited, it performs several specific tasks:

e DECODE must determine which lines were changed. This task essentially maps to
doing a “diff” between the original and the changed source.

o It must determine which previously recognized plans are no longer present. This
can be done by examining the underlying links between plans and statements and
removing any plans that contained deleted or modified lines, as well as their links to

design elements.

e It must recognize any new plans that have been added. One obvious approach is
to simply rerun the APU on the entire program to form a new understanding and
examine the differences between what it recognizes on this pass and what it recognized
on previous passes. (We don’t want to simply replace the entire set of recognized plan
instances, however, since users may have linked them to design elements.)

In addition, DECODE also needs to somehow make the user aware of what has changed
in terms of design elements, such as providing a view of the program’s extracted design
that combines multiple versions of the program. This view can then indicate the plans
that no longer exist and the design elements to which they were connected, as well as any
newly detected plans. This user can then determine whether the modified code is simply
an alternative implementation of those design elements or whether the modification reflects
a change in design that must be recorded in the design-editor.

Extracting Complete Object-Oriented Designs

DECODE now only extracts and records static design elements: classes, their operations,
and the relationships between them. However, this is only a portion of a complete object-
oriented design that is needed to reengineer a system. Such as a design also includes dynamic
models, such as explicit state transition diagrams that show the order in which operations
occur, the conditions under which they occur, and so on. These high-level state diagrams
represent the program’s control flow at the conceptual level rather than at the statement
level.

DECODE needs to be augmented to recognize and record these object-oriented state
transition diagrams. Doing so will allow the user to see the relationship between conceptual
states and particular statements in the legacy system. For example, the user will be able
to obtain answers to questions such as “What happens before (or after) the FilterCopy
operation is applied to transaction-file?” This goal involves several key tasks:

¢ Extending DECODE’s automatic program understanding component to recognize and
record conceptual control-flow information (i.e., states and state transitions). One pos-
sible approach is to extend DECODE’s APU to use the abstract control- and data-flow
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information we maintain about recognized plans to determine the flow relationships
between the operations these plans implement, and by extension recognize high-level
flow relationships between design elements.

o Augmenting DECODE’s design editor to allow users to construct state diagrams, link
them to recognized design elements, and to traverse them to see the relationships
between these states and the code. This is a relatively straightforward extension to
the design editor to capture additional information that current object-oriented case
tools allow users to record when constructing a design. The primary difference is,
once again, the ability to link design to code.

o Augmenting DECODE’s query manager to support queries about the dynamic rela-
tionships between design elements. This is also a relatively straightforward extension,
in which the primary work is to determine which links must be traversed to address
various user queries.

While each of these extensions is significant work, it appears that they fit in well with
DECODE’s current architecture.

3.4 Extending DECODE’s Notion of Cooperative

DECODE’s “cooperation” in the design extraction process is now somewhat limited. Its cur-
rently cooperates by initially extracting as much design information as it can automatically
and by providing an easy to use visual environment for recording and locating extracted
design information. One way we can make DECODE more cooperative is by integrating it
with some of the segmentation creation techniques discussed earlier. This makes it more
cooperative by providing the user with help in deciding what might be a candidate method
and in indicating the location of a potential design element in the code.

There are also two other places where we can extend DECODE to be more cooperative.
One is by making it more aware of the underlying language itself and using this knowledge
to aid the user in specifying portions of design elements. For example, in COBOL, when
the user highlights a PERFORM as a part of a recognized design element, DECODE should
automatically highlight the PERFORMed statements and include them as part of the design
element’s implementation. Similarly, when the user extracts the portion of the source code
that implements a particular design element, DECODE should also automatically extract
the relevant data declarations (this is a variant of slicing, where the user doesn’t want the
full backwards slice involving a given variable). These are both straightforward extensions
given existing tools for extracting data and control flow information.

The other is by having DECODE’s recognition process interact with the user. For
example, DECODE?’s understander now essentially recognizes a design element only when
it can prove that it is present, and it does this understanding just once, before the user
starts examining the program. A reasonable alternative is to have DECODE try to relate
user-suggested design elements to the code. For example, if a user indicates that a particular
design element is present but doesn’t specify where, DECODE can attempt to recognize
that design element but with relaxed constraints and by allowing missing components. The
idea is that DECODE may not have the correct set of plans in its library to recognize the
design element, but variants of those plans might be sufficient to make the connection. This
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mechanism would provide a way for the user to test hypotheses that certain elements are
present, while providing DECODE with a tractable search space to examine.

4 Conclusions

Our work on this cooperative reverse engineering tool has confirmed several of our initial
hypotheses:

o Indexing techniques can apparently be used to significantly improve the performance
of program understanding algorithms.

e We can provide users with a tool that allows them to visually record and query design
information they have extracted from the source.

o We can integrate automated and assisted program understanding techniques by having
a common visual, graph-based representation for any user or system extracted design
information.

We have also learned several key lessons about building a cooperative understanding
environment that scales.

o Any case-oriented tool for recording design information must be integrated with ex-
isting tools, such as those used for program slicing. Otherwise, it is too difficult for
users to locate and highlight the code relevant to a particular design element.

e Any automated understanding tool must provide a simple method for providing pro-
gram plans, otherwise it is too time-consuming for normal users to provide these

plans.

These lessons will drive our future research efforts, as we extend DECODE to deal with
these issues.
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A Plan Definitions

This appendix describes how plans are actually defined to our automated program plan
recognizer and provides a set of example plans. This description includes considerable
detail beyond what appears in our published papers.

A.1 Basic Plan Definitions

Basic plans are defined using several LISP-macros and in a LISP-like syntax. We use
the macro DEFINE-PLAN to specify the attributes a particular plan will have, and we use
the macro PLAN-IMPLEMENTATION to define the plan’s actual components and constraints.
Figure 1 is a simple example.

(DEFINE-PLAN Display-Labelled-Record-Plan (Record Label))

(PLAN-IMPLEMENTATION Display-Labelled-Record-Plan
(IMPLEMENTATION impl-1)

(ATTRIBUTES (Record 7r) (Label 7m))

(COMMENT "Print message followed by record")

(COMPONENTS
(Provide-Msg (Move-Event (Source 7m) (Dest 7pr-msg-field)))
(Provide-Rec (Move-Event (Source ?r) (Dest 7pr-rec-field)))
(Clear-Record (Fill-With-Spaces-Plan (Dest 7pr)))
(Dump (Write-Event (Source 7pr))))

(CONSTRAINTS
(Msg-Is-Field (Field 7pr-msg-field ?pr))

(Dump-Depends-Msg (DataDep Provide-Msg Dump ?pr-msg-field))

(Label-Is-Constant (Constant 7m))

(Msg-Depends-Clear (DataDep Clear-Record Provide-Msg 7pr-msg-field))

(Rec~Is-Field (Field ?pr-rec-field 7pr))

(Dump-Depends-Rec (DataDep Provide-Rec Dump ?pr-rec-field))

(Rec-Depends-Clear (DataDep Clear-Record Provide-Rec 7pr-rec-field)))
(INDEXES

(Provide-Msg WHEN Msg-Is-Field Label-Is-Constant Dump-Depends-Msg))
(IMPLEMENTS

(DisplayLabelled ON Record)))

Figure 1: A basic plan definition.

The DEFINE-PLAN specifies that each instance of the plan named Display-Labelled-Record-Plan
will have two attributes, Record and Label. The corresponding DEFINE-IMPLEMENTATION
describes one implementation of that plan and consists of a number of clauses:

e IMPLEMENTATION provides a unique label for this implementation. It is used in defini-
tions of other plans that are defined in terms of this plan.

e ATTRIBUTES specifies that when an instance of a Display-Labelled-Record is rec-
ognized and created, the Record and Label attributes will be assigned the values of
the plan variables ?r and ?m, respectively.
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e COMMENT allows the definer of the plan to provide an arbitrary number of strings that
describe what the plan does. The user can access this description by clicking on any
- instance of the plan that appears in the design editor window.

e COMPONENTS describes the subplans or syntax tree items that must be recognized to
have a potential instance of the plan. It consists of a list of components, where each
component consists of the component’s name, so that it can be referred to by the plan’s
constraints, and its body. A component body consists consists of the label identifying
the component (either syntax-tree items, whose names all end in the suffix ~Event,
or plans, whose names all end in the suffix -Plan), followed by its attributes and
their required values (either variables or constants). Variable names shared between
component attributes implicitly constrain both attributes to have the same value.
Constant values for attributes implicitly constraint the attribute to have the specified
value.

e CONSTRAINTS provides the specific constraints that must hold between the various
components. These constraints and their semantic are enumerated later in this ap-
pendix. Each constraint consists of an internal name, which can be used to refer to it
in the index for the plan, and the actual description of the constraint, which consists
of the constraint’s name and a set of arguments. These arguments can be variables,
constants, or component names.

e INDEXES provides the name of a component whose occurrence in the code signals a
possible occurrence of this plan followed by WHEN and a list of the names of constraints
that must hold for that component to be indexed. A missing WHEN means that the
component itself is a sufficient index and there is no need for additional indexing
constraints.

o IMPLEMENTS provides a connection between the plan and design elements. It includes
the name of the operation the plan implements and the design element with which
that operation is associated. Only plans that can be directly connected to design
elements include this clause.

Display-Labelled-Record-Plan recognizes that this code:

MOVE SPACES TO PRINT-RECORD

MOVE ’INLAID TRANSACTION’ TO PRT-MESSAGE
MOVE TRANSACTION-RECORD TO PRT-REC
WRITE PRINT-RECORD

corresponds to this instance:

Display-Labelled-Record-Plan
(Record: TRANSACTION-RECORD, Label: ’INLAID TRANSACTION’)

The recognition process includes recognizing that the first statement above is an instance
of Fil1-With-Spaces-Plan.
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A.2 Specialized Plan Definitions

Specialized plans are defined with the SPECTALIZED~PLAN~-IMPLEMENTATION macro, a vari-
ant of the PLAN-IMPLEMENTATION macro. It shares the IMPLEMENTATION, ATTRIBUTES, and
COMMENT clauses. It also has one new clause, SPECTALIZES, which is used to specify which
plan or syntax tree item it specializes. This item is specified with optional values for its at-
tributes, which are implicit specialization constraints. In addition, it also has a CONSTRAINTS
clause, which provides additional constraints on the attributes. There are no COMPONENTS
or INDEXES clauses.
Figure 2 shows how we define Assign-Constant-Plan as a specialization of a Move-Event,

and Fill-With-Spaces-Plan as a specialization of Assign-Constant-Plan.

(DEFINE-PLAN Assign-Constant-Plan (Value ?v) (Item 7i))

(SPECIALIZED-PLAN-IMPLEMENTATION Assign-Constant-Plan
(IMPLEMENTATION impl~1)

(ATTRIBUTES (Item ?i) (Value ?v))

(COMMENT "Fill a field or record with blanks')
(SPECIALIZES (Move-Event (Source ?v) (Dest 7i)))
(CONSTRAINTS

(Const~Source (Constant 7v))))
(DEFINE-PLAN Fill-With-Spaces-Plan (Record ?r))

(SPECIALIZED-PLAN-IMPLEMENTATION Fill-With-Spaces-Plan
(IMPLEMENTATION impl-1)
(ATTRIBUTES (Record 7r))
(COMMENT "Fill record with blanks")
(SPECIALIZES (Assign-Constant-Plan (Value ’Spaces) (Record ?r))))

Figure 2: Some specialized plan definitions.

Assign-Constant-Plan recognizes that this code:

MOVE ZERO TO RP-INVALID-RECORD
corresponds to this instance:

Assign-Constant-Plan(Value: ZERO, Item: RP-INVALID-RECORD)
Similarly, Fill-With-Spaces-Plan recognizes that this code:

MOVE SPACES TO PRINT-RECORD
corresponds to this instance:

Fill-With-Spaces-Plan(Record: Print-Record)

A SPECIALIZED-PLAN-IMPLEMENTATION macro translates into a PLAN-IMPLEMENTATION.
This is done by preserving the IMPLEMENTATION, ATTRIBUTES, and COMMENT clauses, by
turning the SPECIALIZES clause into a COMPONENTS clause whose name is Sole-Component
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and whose value is the provided event or plan, by keeping the CONSTRAINTS clause as is,
and generating an INDEXES clause so that the provided component becomes the indexing
component and any provided constraints become the indexing constraints.

Figure 3 shows the definitions that result from the specialized plans in Figure 2.

(DEFINE-PLAN Assign-Constant-Plan (Value ?v) (Item ?i))

(PLAN-IMPLEMENTATION Assign-Constant-Plan
(IMPLEMENTATION impl-1)

(ATTRIBUTES (Item 7i) (Value 7v))
(COMMENT "Fill a field or record with a constant")
(COMPONENTS

(Assign-Constant-Plan-Component (Move-Event (Value ?v) (Item 7i))))
(CONSTRAINTS

(Const-Source (Constant ?v)))
(INDEXES

(Assign-Constant-Plan-Component WHEN Const-Source)))

(DEFINE-PLAN Fill-With-Spaces-Plan (Record 7r))

(PLAN-IMPLEMENTATION Fill-With-Spaces-Plan
(IMPLEMENTATION impl-1)

(ATTRIBUTES (Record ?r))
(COMMENT "Fill record with blanks")
(COMPONENTS

(Fill-With-Spaces-Plan-Component
(Assign-Constant-Plan (Value ’Spaces) (Record ?r))))
(INDEXES
(Fill-With-Spaces-Plan-Component)))

Figure 3: The plans into which the specialized plan definitions are translated.

A.3 Implied Plan Definitions

Implied plans are defined with the IMPLIED-PLAN-IMPLEMENTATION macro, another vari-
ant of the PLAN-IMPLEMENTATION macro. The definition of an implied plan shares the
IMPLEMENTATION, ATTRIBUTES, and COMMENT fields of basic plan implementations. It has
an additional IMPLIED-FROM clause which names the plan and implementation from which
it is implied. It then has the usual COMPONENTS and CONSTRAINTS clauses, which represent
the additional COMPONENTS and CONSTRAINTS that must be present to have an instance of
the implied plan.

Figure 4 shows the definition of the plan Act-On-Remembered-Condition-Plan, which
can be conditionally implied by Act-On-Condition-Plan.

The Act-On-Condition-Plan simply a specialization of an If-Event which ignores
the Else statements. The conditional implication requires the presence of an instance of
Remember-Condition-Plan, which is used to detect saving the results of a particular test
in a flag variable. This plan recognizes that this code
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(DEFINE-PLAN Remember-Condition-Plan (Cond Flag Value))

(PLAN-IMPLEMENTATION Remember—Condition-Plan
(IMPLEMENTATION impl-1)

(ATTRIBUTES (Cond ?¢c) (Flag 7f) (Value 7?v))
(COMMENT "Set a flag to a value to remember a condition held")
(COMPCONENTS
(Init-Flag (Assign-Constant-Plan (Value ?init-v) (Item ?£)))
(Reset-Flag (Assign-Constant-Plan (Value ?v) (Item ?£)))
(Test-Cond (If-Event (Cond 7c) (Then ?t-seq) (Else 7e))))
(CONSTRAINTS
(Tied-Assigns (DataDep Reset-Flag Init-Flag ?f))

(Reset-Within-If (ControlDep Reset-Flag Test-Cond ?t-seq)))
(INDEXES
(Reset-Flag WHEN Tied-Assigns)))

(DEFINE-PLAN Act-On-Condition-Plan (Cond Actioms))

(SPECIALIZED~PLAN-IMPLEMENTATION Act-On-Condition-Plan
(IMPLEMENTATION impl-1)
(ATTRIBUTES (Cond ?c) (Actions ?t-seq))
(COMMENT "Do an action if a particular condition is true")
(SPECIALIZES (If-Event (Cond ?c) (Then ?t-seq) (Else ?7e-seq))))

(DEFINE-PLAN Act-On-Remembered-Condition-Plan (Cond Actions))

(IMPLIED-PLAN-IMPLEMENTATION Act-On-Remembered-Condition-Plan (Cond Actions)
(IMPLEMENTATION impl-1)

(ATTRIBUTES (Cond 7c¢) (Actions ?t-seq))
(COMMENT "Do an action if a remembered condition is true")
(IMPLIED-FROM Act-On-Condition-Plan impl-1)
(COMPONENTS
(Rememberer (Remember—Condition-Plan (Cond 7c) (Flag ?f) (Value 7v)))
(Tester (Equals-Event (Operand-1 ?f) (Operand-2 ?v))))
(CONSTRAINTS
(In-Then (ControlDep Tester Act-On-Condition-Plan-Component ?c))))

Figure 4: An implied plan definition.

MOVE ZERO to RP-INVALID-RECORD

IF TR-FLIGHT-NUMBER IS NOT NUMERIC
MOVE ’1’ to RP-INVALID-RECORD

corresponds to this instance:

Remember-Condition-Plan
(Cond: TR-FLIGHT-NUMBER IS NOT NUMERIC, Flag: RP-INVALID-RECORD, Value: 1)

The Act-On-Remembered-Condition~Plan would recognize that this code:
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MOVE ZERO TO RP-INVALID-RECORD

IF TR-FLIGHT-NUMBER IS NOT NUMERIC
MOVE ’1’ TO RP-INVALID-RECORD

IF RP-INVALID-RECORD = ’1’
MOVE SPACES TO PRINT-RECORD
MOVE ’INLAID TRANSACTION’ TO PRT-MESSAGE
MOVE TRANSACTION-RECORD TO PRT-REC
WRITE PRINT-RECORD

corresponds to the following instance:

Act-On-Remembered-Condition—-Plan
Cond: TR-FLIGHT-NUMBER IS NOT NUMERIC
Actions: MOVE SPACES TO PRINT-RECORD
: MOVE ’INLAID TRANSACTION’ TC PRT-MESSAGE
MOVE TRANSACTION-RECORD TO PRT-REC
WRITE PRINT-RECORD

A.4 Some Example Plan Definitions

This section provides a collection of additional example plans and code fragments they
recognize.

Figure 5 contains some useful plans defined as specializations of other plans. These
include Make-One-Plan and Make-Zero-Plan, which are used to represent assignments of
1’ and ZERO respectively.

(DEFINE-PLAN Make-One-Plan (Field ?f))

(SPECIALIZED-PLAN-IMPLEMENTATION Make-One-Plan
(IMPLEMENTATION impl-1)
(ATTRIBUTES (Field 7£))
(COMMENT "Assign field the value 1")
(SPECIALIZES (Assign-Constant-Plan (Value ’1’) (Record ?£))))

(DEFINE~-PLAN Make-Zero-Plan (Field 7f))

(SPECIALIZED-PLAN-TMPLEMENTATION Make-Zero-Plan
(IMPLEMENTATION impl-1)
(ATTRIBUTES (Field 7f))
(COMMENT "Assign field the value 0")
(SPECIALIZES (Assign-Constant-Plan (Value ZERO) (Record ?£))))

Figure 5: Some additional specializations.

Figure 6 contains the plans to recognize several variants of reading a record and noting
when the end of file is reached.

Read-Record-Plan is the plan of opening a file, reading a record from it, doing some-
thing if the end of file is detected end, and closing the file. This plan recognizes this code:
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(DEFINE-PLAN Read-Record-Plan (File ?f) (At-End ?actiomns))

(DEFINE-PLAN Read-Record-Plan
(IMPLEMENTATION impl-1)

(ATTRIBUTES (File 7f) (At-End 7seq))
(COMMENT "Read record and do some actions for last record")
(COMPONENTS
(Opener (Open-Event (File 7£)))
(Reader (Read-Event (File 7f) (At-End ?seq)))
(Closer (Close~Event (File 7£))))
(CONSTRAINTS

(Open-First (DataDep Reader Opener 7f))
(Close-Last (DataDep Closer Reader 7f))))

(DEFINE-PLAN Read-Record-EOF-Plan (File Flag Value))

(IMPLIED-PLAN-IMPLEMENTATION Read-Record-EQF-Plan
(IMPLEMENTATION impl-1)

(ATTRIBUTES (File ?file) (Flag 7flag) (EOF-Value 7v))
(COMMENT "Read record and remember EOF by setting flag")
(IMPLIED-FROM Read-Record-Plan impl-1)

(COMPONENTS

(Recorder (Assign-Constant-Plan (Item ?flag) (EOF-Value 7v))))
(CONSTRAINTS
(In-AtEnd (ControlDep Recorder Read-Record-Plan-Component 7seq))))

(PLAN-IMPLEMENTATION Read-Record-Bail-EOF-Plan
(IMPLEMENTATION impl-1)
(ATTRIBUTES (File ?file) (Flag 7flag) (EOF-Value 7v))
(COMMENT "Read record and remember EOF by setting flag and"
"leaving the current paragraph")
(IMPLIED-FROM Read-Record-Bail-EOF-Plan impl-1)
(COMPONENTS
(Bailer (Go-To-Event (Label ?label))))
(CONSTRAINTS
(Goto-In-AtEnd (ControlDep Bailer Read-Record-Plan-Component ?seq))))

Figure 6: The plan Read-Record-Plan.

OPEN TRANSACTION-FILE
READ TRANSACTION-FILE AT END MOVE ’1’ TQ RP-END-OF-TRANS
CLOSE TRANSACTION-FILE

is this instance:

Read-Record-Plan
File: TRANSACTION-FILE
At-End: RP-END-OF-TRANS = ’1’
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Read-Record-EOF-Plan is an extension of this plan whose actions involve recording that
EOF occurred. It recognizes this instance from the code above:

Read-Record-EOF-Plan
File: TRANSACTION-FILE
Flag: RP-END-OF~TRANS
EQF~-Value: ’1’

Recognizing this instance also requires recognizing that the above MOVE is instance of an
Assign-Constant-Plan. The final plan, Read-Record-Bail-EOF-Plan, recognizes this in-
stance:

Read-Record-Bail-EOF-Plan
File: TRANSACTION-FILE
Flag: RP-END-OF-TRANS
EOF-Value: ’1’

from this code:

OPEN TRANSACTION-FILE

READ TRANSACTION-FILE AT END MOVE ’1’ TO RP-END-OF-TRANS
GO TO READ-TRANSACTION-EXIT

EXIT.
CLOSE TRANSACTION-FILE

Figure 7 contains several other input-reading plans that deal with reading multiple
records. The first, Read-Process-Records-Plan, captures the notion of reading input
until some termination condition occurs. The second, Read-Process-All-Records-Plan,
is implied from the first, and captures the notion of reading all the input records.

Figure 8 contains two other high-level plans: Validate-Record-Plan, which captures
the notion of reading a record, performing a test, and printing a message if the test succeeds,
and Validate-Records-Plan, which captures validating a number of input records.

Validate-Record-Plan recognizes that this code:

READ TRANSACTION-FILE AT END MOVE ’1’ TO RP-END-OF-TRANS

IF RP-INVALID-RECORD = ’1’
MOVE SPACES TO PRINT-RECORD
MOVE ’INLAID TRANSACTION’ TO PRT-MESSAGE
MOVE TRANSACTION-RECORD TO PRT-REC
WRITE PRINT-RECORD

corresponds to this instance:

Validate-Record-Plan
Record: TRANSACTION-RECORD,
Test: RP-INVALID-RECORD = ’1’,
Message: ’INLAID TRANSACTION’
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(DEFINE-PLAN Read-Process-Records (File Actiomns Cond))

(IMPLIED-PLAN-IMPLEMENTATION Read-Records-Plan
(IMPLEMENTATION  impl~1)

(ATTRIBUTES (File 7f) (Actions ?acts) (Cond ?cond))
(COMMENT "Read and process records (potentially until EOF"))
(IMPLIED-FROM Read-Record-EOF-Plan)
(COMPONENTS

(Looper (Loop-Event (Cond ?cond) (Actioms ?acts))))
(CONSTRAINTS

(Read-In-Loop (ControlDep Reader Looper ?acts))
(Open-Before  (ControlDep Looper Opemer))
(Close-After (ControlDep Closer Looper))))

(DEFINE-PLAN Read-Process-All-Records-Plan (File Actions))

(IMPLIED-PLAN-IMPLEMENTATION Read-All-Records-Plan
(IMPLEMENTATION  impl-1)

(ATTRIBUTES (File ?file) (Actioms 7acts))
(COMMENT "Read and process all records’)
(IMPLIED-FROM Read-Records-Plan)
(COMPONENTS ‘
(Tester (Equals-Event (Op-1 7flag) (Op-2 ?v))))
(CONSTRAINTS
(EOF-In-Tester (ControlDep Tester Looper ?cond))
(EOF-Test (Equivalent ?cond Tester))))

Figure 7: The plan Read-Process-Records.

Validate-Records-Plan recognizes that this code:

READ TRANSACTION-FILE AT END MOVE ’1’ TO RP-END-OF-TRANS

IF RP-INVALID-RECORD = ’1’
MOVE SPACES TO PRINT-RECORD
MOVE ’INLAID TRANSACTION’ TO PRT-MESSAGE
MOVE TRANSACTION-RECORD TO PRT-REC

corresponds to this instance:

Validate—-Records-Plan
File: TRANSACTION-FILE
Test: RP-INVALID-RECORD = ’1°
Message: ’INLAID TRANSACTION’

A.5 Constraint Definitions

Our constraints are not necessarily binary. They are binary only when the arguments to
these constraints are fully instantiated. In that case, they return T if the constraint holds
and nil if it does not. However, when the arguments to these constraints are uninstantiated
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(DEFINE-PLAN Validate-Record-Plan (Record Test Message))

(PLAN-IMPLEMENTATION Validate—Record-Plan
(IMPLEMENTATION impl-1)

(ATTRIBUTES (Record ?record) (Test ?7cond) (Message 7m))
(COMMENT "Read record, perform test, and write an error"
"message if the test fails")
(COMPONENTS
(Reader (Read-Record-Plan (File ?file)))
(Validator (Act-On-Condition-Plan (Cond ?cond) (Actioms ?acts)))
(Notifier (Display-Labelled-Record-Plan (Label 7m) (Record 7r))))
(CONSTRAINTS
(Cond-Display (ControlDep Notifier Validator ?acts))
(After-Read (ControlFlow Reader Validator)))
(IMPLEMENTS

(Validate ON Record)))
(DEFINE-PLAN Validate-Records-Plan (File Test Message))

(IMPLIED-PLAN-IMPLEMENTATION Validate-Records-Plan
(IMPLEMENTATION impl-1)

(ATTRIBUTES (File 7file) (Test 7cond) (Message 7m))
(COMMENT "Validate many records on a file")
(IMPLIED-FROM Validate-Record-Plan impl-1)
(COMPONENTS

(Looper (Loop-Event (Cond ?7cond) (Actioms 7acts))))
(CONSTRAINTS

(Read-In-Loop (ControlDep Reader Looper ?acts))
(Test-In-Loop (ControlDep Validator Looper ?acts))
(Print-In-Loop (ControlDep Notifier Looper 7acts))))

Figure 8: The plan Validate-Record-Plan.

(such as a variable) or partially instantiated (such as the name of a component containing
variables), the constraints return a binding list of values for which the constraint would
hold.

Our constraints fall into two general categories: non-flow-oriented and flow-oriented.
The four non-flow-oriented constraints are Field, Record, Constant, and Equivalent.
The two flow-oriented constraints are DataDep and ControlDep.

Field(X,Y)

Field determines whether X is a field in the record Y. If both X and Y have been instan-
tiated, this constraint returns T or nil. If only X is instantiated, Field either returns a
binding for Y or nil, depending on whether there is a record containing X as a field. Sim-
ilarly, if only Y is instantiated, Field either returns a set of possible bindings for X that
correspond to the fields in Y, or nil if Y has no fields. If neither X or Y is instantiated, the
constraint returns “unevaluable”.
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This constraint is evaluated by examining a table of fields and records built up from the
abstract syntax tree (as part of data-flow analysis) before program understanding begins.

Record(X,Y)

Record determines whether X is a record in the file Y. If both X and Y have been instan-
tiated, this constraint returns T or nil. If only X is instantiated, X either returns a binding
for Y or nil, depending on whether there is a file associated with X. Similarly, if only Y is
instantiated, Record either returns a set of possible bindings for X that correspond to the
records associated with Y, or nil if Y has no records. If neither X or Y is instantiated, the
constraint returns “unevaluable”.

This constraint is evaluated by examining a table of files and records built up from the
abstract syntax tree before program understanding begins.

Constant (X)

Constant determines whether X is a constant value. If X is instantiated, this constraint re-
turn T if it is a string literal, a numeric constant, or a variable that is never assigned to after
it is given its initial value. If X is not instantiated, the constraint returns “unevaluable”.

This constraint is evaluated by inspecting X to see if it is a language constant and
by then checking a table of read/write information to determine whether it is potentially
modified after it is assigned an initial value. (That table is constructed as part of turning
the initial parser-produced abstract syntax tree into an internal representation.)

Equivalent(X, Y)

Equivalent determines whether X and Y are equivalent values. Its primary use is to decide
if an item to which a variable has been bound is the identical to a particular component
within a plan. It returns T if X and Y can be determined to be equivalent and nil otherwise.
If either X or Y is unbound, it returns “unevaluable”.

This constraint is evaluated by simple matching of X and Y.

DataDep(X,Y,V)

DataDep determines whether Y is data-dependent on X for value V (that is, whether the
value of V used at Y is the same value assigned or used at X). It has different behavior
depending on whether X and Y are events or plans, and on whether or not X and Y are
fully or partially instantiated.

In the simplest case, when X and Y are fully instantiated with events (that is, X and
Y are the names of plan components that have already been matched to specific events
in the abstract syntax tree), this constraint simply verifies that V is not changed on any
control-path leading from X to Y. It returns T if V is unchanged and nil otherwise.

If X is partially instantiated (that is, X is the name of a plan component that has not
been matched to specific events in the abstract syntax tree) and Y is fully instantiated
with an event, the current behavior is to return set of bindings for X for which the data-
dependency relationship holds on the provided variables. (This is currently computed by
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collecting all possible events that match X and then computing the subset of these events on
which Y is data-dependent for the provided variable. Should a static dependency database
become available, however, the system can instead check the variable’s dependencies, a more
efficient approach.) The overall behavior is the same if Y is partially instantiated instead
of X. ‘

If V is not instantiated (that is, no variable is provided), or if both X and Y are only
partially instantiated, DataDep returns “unevaluable”. A slightly more complex case occurs
if X or Y is instantiated to a plan that has been defined as a direct or indirect specialization of
an event. In this case, the data dependency analysis is carried out in terms of the underlying
event. (That is, if X is a specialization of a plan that hasn’t been instantiated yet, all those
plans are rounded up, their specialized events located, and the data dependency analysis
computed in terms of those underlying events).

An even more complex case occurs if X involves a fully instantiated plan and Y involves
a fully instantiated event. In this case, we recognize a data-dependency on V between
Y and X if Y has a data-dependency on V on any underlying event in X that modifies
V or, if X never modifies V, on any event in X that uses V. (The system evaluates this
constraint by locating all underlying events in X involving V and determining whether Y
has a data-dependency on any of these events.) The idea here is that there an event has a
data-dependency on a plan for a given variable if the variable’s value is computed by one
or more steps of the plan Similarly, if X involves an event and Y involves a plan, then Y is
data dependent on X for variable V if every event in Y involving Y is either data dependent
on X or on some other event in Y. The idea here is that this means any value for V used
by Y is computed by Y or computed by X. '

The final case is when X and Y are both plans. In this case, Y is data dependent on X
if every event in Y that uses V is data-dependent on X.

When X or Y is a plan, as with events, they can be partially instantiated. In that case,
we first find the set of matching plans before checking the data dependency relationships.

None of the definitions for data-dependency relationships between plans consisting of
multiple sub-plans or events is entirely satisfactory. On the positive side, however, they
tend to give intuitive results to users defining plans, even though a better approach would
involve a representation of plans that made all flow relationships explicit rather than our
attempt to dynamically compute them.

ControlDep(X,Y) and ControlDep(X,Y,S)

There are two forms of the control dependency constraint.

Its simplest form, ControlDep(X,Y), determines whether Y’s execution follows X’s ex-
ecution (i.e., there’s no way to execute Y without executing X). Its more complex form,
ControlDep(X,Y,S), determines whether Y’s execution is included in the sequence of state-
ments S that are a branch of X (i.e., if S is executed, then Y must be executed as well). For
example, S could be instantiated to a variable corresponding to the statements in the Then
clause of an If-Event or the At-End clause of a Read-Event.

As with data dependencies, there are a variety of possibilities to worry about. The sim-
plest case is that X and Y are instantiated to events. In this case, checking ControlDep{X,Y)
corresponds to simply verifying that Y is on any execution path between X and the pro-
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gram’s exit. This is computed by trying to construct a path (in reverse) through the
program’s flow graph from the program’s exit to X that doesn’t include Y. If we can’t con-
struct such a path, and we can find a path from Y to X, then Y is control dependent on
X. If we're given ControlDep(X,Y,S), then instead of checking from X, we check from the
first event in the sequence of statements S associated with X. For all these cases, it returns
T if it can demonstrate the specified dependency and nil otherwise.

As before, if X and Y (and, if we’re provided an S, the first element of S) are special-
izations of events, we do these checks on the underlying events.

Another possibility is that X is only partially instantiated to an event and Y is fully
instantiated to an event (or vice versa). In this case, the basic constraint is treated as a
query for all events of X’s underlying event type on which Y is control dependent. (This
query is carried out by taking each event with X’s underlying type and checking whether
Y is control-dependent on that event.) The more complex constraint is treated similarly,
except that it locates all events of X’s underlying event type and then verifies the control
dependency between their S branch. In this case, the constraint returns the list of successful
bindings for X.

Still another possibility is that X is a plan and Y is an event. In this case, we consider
Y control dependent on X if it is control dependent on any event underlying X. (The idea is
that if we have recognized an instance of a plan, we know that its components are present
and therefore if the plan is executed, those components will be executed as well. So if Y
is control dependent on any of those components, it too will be executed.) Similarly, if X
is an event and Y is a plan, then Y is control dependent on X if any event in Y is control
dependent on X.

The final case is where both X and Y are plans. In that case, X and Y are considered
control dependent if Y is control dependent on any event in X.

When X or Y is a plan, as with events, they can be partially instantiated. In that case,
we first find the set of matching plans before checking the control dependency relationships.

B Design Editor/Query Browser

This section describes the functionality provided by our design editor and code browser.
The user invokes the system by running code-browser. This program initially presents an
empty window to the user, with a single horizontal menu bar at the top of the program.
This menu contains several entries: File, Edit, Query, Extract, Link, and Other.

The File Menu

The File menu has two entries: Open and Exit.

e Open leads to a dialog box used for identifying the COBOL source file in which the
user has an interest. The system opens this file, places the first page in the browser
window, and invokes the design editor on the design file associated with this COBOL
file (if there isn’t one yet, the design editor’s initial window is empty). In addition, it
invokes the program to construct the AST and the automated program understander,
if they have not already been invoked for this file.
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Once the window is open the user can begin to highlight lines, which is done by
selecting a starting line with the left mouse button, dragging the mouse to the ending
line, and then releasing the left mouse button. Selecting the right mouse button
unselects a line (or set of lines, if it is dragged over highlighted lines).

® Exit simply causes the code browser and any spawned design editor to terminate.

The Edit Menu

The Edit menu has four entries: Clear Highlight, Clear Text, Highlight All Known,
and Reverse Highlight.

¢ Clear Highlight removes all current highlights. This is useful when the user has
selected a variety of discontinuous lines and wishes to start over without anything
highlighted.

® Clear Text removes all current highlights directly or indirectly associated with the
currently selected element in the design window. This is useful for allowing the user
to highlight a portion of an existing object’s implementation. The user can select a
design element, causing its implementation to be highlighted, and then clear the text
associated with various design elements that contributed to that design element.

o Highlight All Known highlights all lines that have been connected to any design
element. This is useful for getting a feel for what percentage of the program has been
at least partially understood.

® Reverse Highlight highlights the non-highlighted lines and turns of the highlighting
for highlighted lines. When combined with Highlight A1l Known, this provides a
quick way to see which parts of a program have not been at least partially understood.
Also, when combined with Clear Text, this can be used to determine what parts of
the program do not appear to be related to a given design element.

The Query Menu

The Query menu has five entries: Complete Design, Object Class, Operator, Instance,
and and Implementation.

¢ Complete Design produces a new scrollable window (called a report window) that
contains a description of every design element, its relationships to other design ele-
ments, and the specific code lines that have been linked to it (directly or indirectly).

® Object Class produces a report window containing the complete description of a
highlighted design element of type Class, including all of its operations, and its re-
lationships to other classes. When this item is selected, a dialog window comes up
that allows the user to select whether all subclasses of the specified object should be
displayed as well.
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e Operation is similar to Object Class, but restricts its description to the operations
associated with a given class. As with Object Class, when this item is selected, the
user can choose whether to display the operations for the subclasses of the relevant
object class.

e Instance produces a report window showing the all recognized instances of a partic-
ular object class. As with the other menu entries, the user can choose whether to see
this information for the subclasses.

e Implementation produces a report window containing all of the lines implementing
the current design element.

Once the user has created a report window, the user is able to save this window into a
file.

The Extract Entry

The Extract entry is selected after the user constructs a report window. It extracts any
highlighted code lines and places them in a separate file (of the user’s choosing). The idea
is that the user can select a particular design element, which causes all the relevant lines
in the source file window to be highlighted, and then use extract to place all of the code
related to that design element in a single file.

The Link Entry

The Link entry is selected after the user highlights a variety of lines in the code browser
and then selects a particular design element. When Link is selected, the system records a
link between the highlighted source lines and the selected design element.

The 0ther Menu

The Other menu has a few choices that will eventually be absorbed into other windows:
Unknown and Unconnect.

e Unknown produces a report window showing all design elements that have not yet been
connected to the source.

e Unconnect disassociates a selected design element from any source that is linked to
it.
C Additional Implementation Details
DECODE is currently a collection of several different programs:

o MeraTalk, a pre-existing, student-written graphical node and link-based design editor
that allows the particular nodes and links to be graphically defined. MeraTalk keeps
track of all design elements created by the user.
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This program is written in C, on top of X and Motif. We made some minor modifi-
cations to it to allow it to communicate with other software.

CodeBrowser, a newly-written (as part of this project) source code browser that pro-
vides the main graphical interface to the user (the menu entries described in the
previous section are produced and managed by this program). It maintains a flat-file
textual description of the links between the design elements and the code in a format
suitable for MeraTalk to read.

This program is written in C, also on top of X and Motif.

CobolParse, a program to produce AST’s from Cobol Programs. This is software writ-
ten by students in the University of Hawaii’s Software Engineering Research Library
as part of another project. It is written in C.

APU, a newly-written (as part of this project) program understanding tool. It reads
the abstract syntax tree description of a COBOL program, produces a somewhat
parser-independent AST, and produces an output file (in the expected format for
MeraTalk) showing all design elements and plans it recognized and their relationships
to the source code. We have taken the extra step of producing a parser-independent
AST, so that in the future we can more easily replace our current parser with a
public-domain one.

This program is written in Common Lisp.
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MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Materiel
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence, reliability
science, electro-magnetic technology, photonics, signal processing, and
computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technoiogy, Electromagnetic Technology,
Photonics and Reliability Sciences.




